
958 

Acta Cryst. (1976). A32, 958 

Structure  Factor  Algebra  in the Probabi l i s t ic  Procedure  for P h a s e  D e t e r m i n a t i o n .  
IV.  Quarte t s  

B,c C. GIACOVAZZO 

lstituto di Mineralogia e Petrografia, Universitd degli Studi, Bari, Italy 

(Received 15 November 1975; accepted 15 May 1976) 

An investigation has been carried out on the influence of the space-group symmetry in the quartet 
relationships. New generalized formulae are derived which take the statistical weights of the re- 
flexions into account. Cross-reflexions of special type may strongly modify formulae valid in P1 
and P]'. 

1. Introduction 

In recent papers (Giacovazzo, 1974a, b, c) a combina- 
tion of the joint probability distribution approach and 
of the space group algebra has been proposed. ~ ,  
Sayre and tangent formulae were generalized so as to 
take the statistical weights of the reflexions into ac- 
count as well as their contingent centrosymmetric 
nature. For example, the well known Cochran (1955) 
relation was rewritten in the form: 

P(~OH1) 

= exp [Gal. H 2 C O S  ( (pH  1 - -  

where 

~,.,~ - ~.x _ .~)]/2~Io(G,-,1. ,-,~), 

<~(- Hx)~(H2)~(H1- H2)) 
Gnl, H 2 ~  

m V(PnlPn2PH1- n2) 

2 [ E H I E H 2 E H t - H 2 [  . 
× 

(N 
is the trigonometric function for the structure fac- 

tor, m is the order of the space group, Pn the statistical 
weight of EH. The weight GHI.H2 is invariant under 
cell transformations and takes the full space-group 
symmetry into account. For example, in P21212~ the 
knowledge of ~0H2 and ~0Hx-H,, when H2=(O,g,u) and 
H~-H2=(g,g,O), gives no contribution to the knowl- 
edge of ~0Ha = ~0o0,. In accordance with this fact, 

(~( - H~)~(H2)~(H1 - H2) ) = 0 .  

In recent years (Hauptman, 1974a, b; 1975a, b; 
Green & Hauptman, 1976; Hauptman & Green, 1976; 
Giacovazzo, 1975; 1976a, b, c) some probabilistic 
theories of the cosine invariant cos (~oa~ +~0nz+~0a3-- 
~0Hx+ra2+n3 ) have been described in P1 and PT. These 
theories lead to an estimate for the value of the cosine 
which may lie anywhere between - 1  and +1 and 
depends on the values of the seven magnitudes IE.11, 
lEa21, IE.3I, IEax+n2+.3l, IEHl+H2l, IEnl+n3[, [EH2+H3[" 

A general theory of quartets valid in all the space 
groups has not been given. One would expect that the 

phase relationships as stated in P1 or P1 are valid 
respectively in any non-centrosymmetric or centro- 
symmetric space group if all seven IE[ magnitudes cor- 
respond to general reflexions. When special reflexions 
are involved, however, the phase relationships valid in 
P 1 and PT may be affected in a remarkable way. The 
aim of this paper is to generalize to all space groups 
the probabilistic approaches proposed by Giacovazzo 
(1975, 1976a) and Hauptman (1975a). Giacovazzo's 
approach involves a Gram-Charlier expansion of the 
characteristic function in terms of the statistical cumu- 
lants. Hauptman's formulation directly uses the same 
cumulants in an exponential expression of the charac- 
teristic function. In order to give phase relationships 
valid in all the space groups, it will be enough to ob- 
tain the general expressions of the cumulants by space 
group algebra. Five Appendices are devoted to this 
algebraic analysis. 

2. The mathematical approach 

The Gram-Charlier expansion used (Giacovazzo, 1975) 
to derive the quartet relationships in P ]  is 

C(Ul, U2 . . . .  , u,,) = exp [-½(u~ + u~ + . . .  + u~)] 

( s3 s4 s~ ) 
× 1+ t - ~ - + - ~ - +  2~- 3 + . . .  , (1) 

where ui, i=  1,7, are carrying variables associated with 
Et, t =N/m is the number of independent atoms in the 
unit cell for a space group of order m, and 

~rs . . .~  Sv=t ~+ r]s!i..w!(iui)'(iu2)S...(iun)W. (2) 
( r + s + . .  . w=v)  

2rs...w are the standardized cumulants of the distribu- 
tion defined by 

Yes . .  °'w 
•rs . . . .  = [('r:2 Te's/2- ~'-,,,/2 (3) 

• x 2 0 . . . 0  ~ x 0 2 . . . 0  ~ x 0 0 . . . 2  

K,,...~, is a multivariate cumulant of order r + s + . . .  
+ w. The Fourier transform of (1) in PT gave the fun- 
damental relation 
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P + ~ ±  " ± tanh{--~ 2 

[I+(E~,+Hz 1)+ z ] - (Erix +n3-  I) + (E22+n3 - 1)] 
I 2 2 2 ~ + 4(Enl + H2-bEH 1 +H a -+- EH2 + r13 -- 3)/N 

(4) 
In order to derive phase information in P1 we have 

used the Gram-Charlier expansion 

C ( / , / 1 , . . . , u 7 , v t , . . . , u 7 )  

u~ ~ 

x 1+~3-/S~ + - ~ - +  2t 3] + . . .  , (5) 

where 

1 2~s...w 
S~=t  2 2 v/2 r!~.i ,  lw! (iul)r(iu2)S" " "(iv7)w" 

(r+s+. .. +w=v) 
(6) 

The Fourier transform of (5) leads to 

I~(G) 
<cos (~o,,+~onz+~ori3-~on,+nz+,3)>_ ~ Io(G) ' (7) 

where 

G= 2IEu,Et,2EH3EH, + u'2 + H31 
X[I  "31- (E21  +H2 - 1)-~- 2 (Enx+ .3 -  1) + (E22+n3-1)] /N.  

(8) 

Retainin$ terms to order l/t, the probability distribu- 
tion function is 

1 ~(Ex + E 2 + E 2 + E])} P(EI, E2,E3,E4)= ;~s~exp { - '  2 
t ~ ) -  

1 14000 10004 
× 1+  -}- 4!0!0!0! H4(E1)+ . . .  + 0!0!0!4t H4(E4) 

/],1111 ] } 
+ 1!111!1! ExEzE3E4 , (9) 

where 
E I =  E . ~ , E 2 =  E,,~ . . . .  , 

and Hv(x) is a Hermite polynomial defined by 

d v 
H,,(x) = ( -  1) v exp (½x z) - d ~  exp (-½x2).  

From Appendix A 

< ErlIErI2EI-I3EI-Ii + rI2 + n3> 

__ 1 < ~(H,)~(Hz)ff(H3)~(HI+ H2 + H3) .> 
tm  2 ~(PnlPn2PH3Pal+n2+rl3)  

= Wnx, n2, n3 N -  1, 

where 

(m " } 
WH 1 H2 H3 = 1 ~lP'S,q ~[HI(  p - I ) + H 2 ( R s - I ) + H 3 ( R ~ - I ) ]  e x p  2 7 f f ( H 1 T , , + H 2 T s + H 3 T a )  

• ' m \ g(prhpn2pnspn 1 +H2+It3) . 

In order to obtain general phase relationships, the 
more relevant standardized cumulants 2,s...w will be 
estimated by  Bertaut (1959a, b) algebra. For the sake 
of simplicity the analysis will be made for centrosym- 
metric space groups alone. Most of the conclusions 
derived however are valid in non-centrosymmetric 
space groups. Relevant differences will be explicitly 
mentioned. 

3. The probability distribution P(EH1, EH2, En3, 
EHI _bH2+H3 ) in the centrosymmetrie space groups 

The aim of this section is to investigate the influence 
of the space group symmetry on the standardized cu- 
mulants 211,, in the distribution P(Enl,  EH2,EH3, 
Erh+n2+u3). For this distribution the characteristic 
function (1) has values 

S3---0 , 

/7{,4000 )~0004 
S4=t  4!0!0!0! ( /Ul )4"~ ' ' ' "  "1- 0!0!0!4! (iu4)4 

2,111 ] 
-b l [ l t l [ l [  (iul)  (iuz) fiu3) (iu4) • 

Thus, from (9) the probability that 
Eit lEH2EH3EHI+H2+H3 is positive is given by 

P+---½ 

+½tanh  ( N  WrII"n2"n3IErhEHzEH3Erh +n2+rI3[) " (10) 

WHi ' H2 ' H3 takes the statistical nature of the reflexions 
into account: its value may be notably different from 
unity. When WHt. Hz. H3 > 1 the positivity of the quartet 
is strengthened. As an example, numerical values of 
WHt. Hz. H3 for different reflexion types are shown in 
Table 1 for space group Pmmm. The table holds on 
condition that, when not demanded by the chosen 
types of Hj vectors, all the cross-vectors H u =Hi  + Hj 
do not satisfy the relation H i j ( R s - I ) =  0 for Rs ~ I. 

For example, if the reflexions in the first column of 
the Table 1 have indices (hsklll), (hzk212), h2k313), 
(hlka14) , H23 is a special reflexion: we obtain WH,, n2. H3 
=2. Hence, the absolute value of Wnx,n2.n3 may be 
notably different from unity even when all the Er, j re- 
flexions are general. The condition is that one or more 
cross-vectors lie on a symmetry element of the point 
group. In particular (Appendix A), the probability 

A C 32A - 3 
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that the product EH1EH2EH3EHI÷H-÷H 3 is positive 
equals ½ when one of the cross-reflexlons is systematic- 
ally absent, whatever the moduli [Era[ may be. This is 
the chief result of this section. 

For example, the reader will be able to show, from 
the expression of the trigonometric structure factor in 
P2~, that 

(~(257)~(314)~(227)~(394)> = 0 .  

In accordance with our conclusions, H~ + Ha = (070) is 
a systematic absence. As will be shown in § 4, however, 
it is possible to obtain information about cos (aPril, + 
~H 2-4- ~0H3 --  ~gH1 ÷H2÷H3 ) even when some cross-reflex- 
ions correspond to space-group extinctions. 

One needs to consider the more general probability 
distribution 

P (EH1, EH2, EH3, EHI, + H2, EHI, + H3, EHz + H3, EHI.I.HZ.÷ H3) " 

This distribution in fact enables us to calculate (Giaco- 
vazzo, 1975) the products 

(~(H0~(H2)~(H~ + H2)> 
x <~(H3)~(I-I~ + 1-12 + H3)~(I-Ix + n2)> ,  

<~ffI0~(n~)~frI~ + H~)> 
× (~(I-I2)ff(I-I~ + H2 + H3)~(I-It + H3)>,  
CffI2)~(H~)~(H~ + H~)> 
× <~(H~)~(H~ + H2 + n3)~(H2 -{- H3)>, 

which, together with 

C(H,)~(H~)~(I-Ig~(H~ + H,  + H~)>, 

define the positivity or negativity of a quartet (Appen- 
dix B). 

4. The probability distribution P(EHI,,EHz,EH3,EH~ + H2 , 
Enl, ÷ H~,EHz ÷ H3,EH~ + H2+ HS) in the centrosymmetric 

space groups 

In any centrosymmetric space group 

$3= t[2alOlOOo(iUl) (iu2) (iu4)+ )-101,0100(iui,) (iu3) (ius) 
+ ~OtlOOl,o(iU2) (iu3) (iu6) +/t,J.oooll(it/t) (iu6) (iuT) 
+ 20too~ot(iu2) (ius) (iuT)+ 200tl,oo~(iu3) (iu4) (iu7)], 

S4=t[ . . .  + 2XlrOOO~(iu~) (iu2) flu3) (iuT)+ . . . .  

We omit in the expression of $4 all non-zero stan- 
dardized cumulants which do not affect the conclusive 
sign relation. From Appendices A, B, C we obtain 

P + "~-- ½ + ½ tanh (--I IEHI,EH2ErlsEHI, + H2 + H31 

WHI,, Ha , H3 -4- A 
× (11) 

I + B  ] 
where 

A =  
+ 
+ 

WHI,, H2WH 3 , H I + H 2 + H 3 ( E H I + H 2  _ 2  1) 
2 WHx, HS WH2. HI. + H2 + H3(EHx + H3-- 1) 

WH2, H3 WH1 . HI, + H2 + Hs(EH2 + H3 - 2 1), 
2 

B = - ~  [(W2HI,,H2-4 - W 2 3 ,  HI,+H2÷H3) ( E 2 1 + H 2  - 1) 

~t_ ( W 2 1  ' H3 + 2 2 (EH1 +H 3 1) WH 2, H 1 + I'12 -I- n 3) 

+(W~H~ . ~ +  W~,.H,+.~+H~) ~ -- , ( E H 2 + H  3 1 ) ] ,  

1 WHI.,H2 = m- ~k. ~ ( n l ) ~ ( n 2 ) ~ ( I - I 1  
/ + H2) 

m 
(11) reduces to (4) both in P1 and in any space group 
when all the reflexions are general. When special re- 
flexions are involved, the estimates of P÷ by (4) and 
by (11) can have different values. As an example, in 
Pbca, let 

H~=(0k,l~), H2=(Okz12), Ha=(h30- l~ ) .  

Then 

P + ~-- ½ + ½ tanh [--~ IEH~EH2EHsEHI + HZ + H3I 

2 V2E~I' + H2 + 4 ]/ZE2~ + nz + 4 ]/2E~2 + H3 -- 61/2 ] 
X 

1 +4(3E2,+Hz+6E~I,+n3 +9E~2+n ~ -  18)/N .(12) 

If N =  50, IEHI,I=IEn~I=IEH~I=IEHI,+H~+H~I=2, 
IEHl,+nzl=0.80, IEnl+n31=lEnz+n31=l-2, we obtain 
P÷ _~0.72 by (4) and P÷---0.98 by (12). 

If IEHI, ÷.o_1- IEna÷n,I---IEH~.÷H~I ~0"6, we obtain P+ 
=0.33 by (4) and P.l. "~0-01 by (12). 

Thus, the positivity (negativity) of strong positive 
(negative) quartets with special reflexions seems en- 
hanced by the space-group symmetry. The phase as- 
signment in this special type of quartet seems then 
more reliable than in quartets in which all the involved 
reflexions are of general type. Of considerable interest 
are the quartets in which some of the cross-reflexions 
corresponds to a space-group extinction. For example, 
let us consider in Pbca the case in which 

t~,=(0k, l,), I~2=(0kd,), U3=(hk, l,), 

Table 1. Values of WHI,. H 2, H 3 in Pmmm for some types of reflexions 

(~(HI)~(H2)~(Ha)~(HI + H2 + H3)) 
< ~(I-II)~(H2)~(I-I3)~(H1 + H2 + H3) > 

PHIPH2PH3Pltl + H2 + H 3 

~! t l ,  H2, H3 

hlklll Okdl 00ll Oktll Okdl Okdl Okdt OOlt 00~ OOlx 00~ 
h2k2~ h2k2~ h2k212 0k2~  0k2~ h 2 0 0  h 2 0 ~  h 2 0 0  h 2 0 0  h200 00~ 
h3k3~ h3k3~ h3k3~ h3ka~ Ok3~ h3k3~ h3k30 hak3~ hak30 0k30  006 
hak4~ h4k4~ h4k4~ h4k4~ Ok4~ h4k4~ hak4~ hak4~ hak4~ hak4~ 00~ 

8 16 32 32 64 64 64 128 256 512 512 

8 8V2 16 16 16 16V2 16V2 32 32V2 64 32 

I V2 2 2 2 2V2 EVE 4 4V2 8 4 
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with h odd. (11) gives then 

P+"~--½+½ tanh { l  lEnlEn2EHH3Eta~+n2+n3l 

2(E~,+ta2-1)+2(E~'2+ta3-1) [ 
x 1 + 4 ~ ~ i ) - k - ~ E - ~ n 2 + H 3  - 1)]/N J" (13) 

Etal+ta 3 in fact is a systematically absent reflexion, so 
that (see Appendices) 

WH1, H2, H 3 = WH1 ' 1-1[ 3 = WIt2, HH 1 +H2+t l  3 = 0 ,  

If all the E's  are general and Eta I +n3 corresponds to 
a space group extinction, (11) reduces to 

P + "~- ½ + { tanh [ l lEtaiEta2En3Eta~ + n2 + nns I 

e~h + rI2 + E~,2+ tas- 2 ] 
x I+4-(E--~;+E--~2+n;__2) /N j . (14) 

03)  and (14) suggest that, when Hx, H2,H3 range over 
all reciprocal space on condition that one of the cross- 
vectors corresponds to a space-group extinction, the 
percentage of negative quartets equals 0.50. From (13) 
furthermore 

<EtaxEta2Eri3Eta , + 1-12 + H3 > ~--- 0 ,  

in strong contrast with the overall positivity of the 
quartets. The anomalous character of these quartets, 
therefore, requires an appropriate use in the proce- 
dures for phase determination. 

5. Strengthening of some quartet relationships 

In a centrosymmetric space group of order m > 2 let 

Eih, En2, Eta3, Eta, + n2 + ta3 (15) 

be a quartet whose reflexions are of general type. If 
En2+m is a special reflexion 

Eta1, Eta2R,' EtasRs, Etax + H2 + tas (16) 

is a quartet too, provided that ( H 2 + H 3 )  ( R s - I ) = 0 .  
(15) and (16) are symmetry-equivalent quartets, but 

the first depends on the cross-reflexions 

Enl + u2, Enl + tas' EH2 + 1t3' (17) 

the second on 

EH 1 +H2R a, EH 1 +H3R a, EH2+H 3 • (18) 

The pairs (EH1 +.2, EHx + n3) and (EH1 + ta2Ra' EHI + H3Rs) 
are not symmetry equivalent: so two different sign re- 
lations are then available for the same quartet. If  we 
denote by P~+ and P2+ the probabilities of a positive 
sign for (15) arising respectively from (17) and (18), 
a measure of the overall probability should be (Woolf- 
son, 1961) 

Px-P2-  ) - '  
P+ = 1+ Px+P2+ 

However, as the two sign relations are not independent, 
a better procedure should be to study the joint prob- 
ability distribution 

P (EH1, Erl2, EH3, Etal + ta2, Etal + lt3, Eta2 + H 3, 
E,, I + ~ + .~, E,~, + .~., , ,  E .  1 + r , : O  .* 

From Appendix D we derive (11) again, but this time 

A,~ 
+ 

, W1 2 1) W"I "2 ta3,r',+ta2+n3(Enl+ta2 - 
W,1, % Wn2, r h + I-,2+,s(E21 + % -  1) 

2 
-at- WH2, H 3 WH1, H 1 +H2+H3(EH2+H3 -- 1) 
"3I- W h l ,  H2WH3,HI+H2+H3(E21..II+H2Rs - 1) 
× (-- l )2(n2+na)Ts+ WtI1,H3 WHz, tal +ta2+H 3 

2 1)2(Hz+Hs)Ts x (Enl+ta3a,-  1) ( -  (19) 

B ,~' 

+ 
+ 
+ 
+ 

where 

2 W2s, +n2+n3) (Ehl 1) -~ [ ( w h l , , , 2 +  ,,1 + t a , -  

( W21, a3 At_ 2 ~/VH2, H1 +H2+H3 ) 2 (EH1 + I-13 -- 1) 
( 2 W2~, +ta2+"3) 2 WI-I2, H3 + H1 (EH2+H 3 -- 1) 

'2 2 
(W~I ,  H2+ WH3, H 1 +Hz+H3) (EHI+ta2Rs-- 1) 

'2 
( W ~ x , n 2 +  WH3, H,+H2+H3 ) (E21+HSRs - 1)] ,  (20) 

1 / ~(H1)~(H2)~(Hx + H2R,) \ 
m \ / ,  

__ 1 < ~ ( H 3 ) ~ ( H  1 "l t- H 2 + H 3 ) ~ ( H  1 -[- n 2 R s )  

m / "  

The reader will be able to generalize the above con- 
siderations to the case in which more than one of the 
reflexions 

Eta 1, En2 . . . .  , Enx + rt2R,, Etax + n3a: EIaz + ta3R: " " 

are of special type. We limit ourselves to some con- 
siderations about the role of the weights W in the 
direct procedures for phase determination. 

When the space-group symmetry is involved in the 
probabilistic approach, the positive or negative char- 
acter of the quartets is generally enhanced in compari- 
son with the direct use in any space group of the for- 
mulae valid in PT. So, if one does not wish to spend 
calculation time in the evaluation of the W's, the use 
of the approximation W =  1 seems in accordance with 
the principles usually adopted for proper weighting. 
What seems important, however, is to recognize if 
some of the cross-vectors are of special type: if pos- 
sible, a larger number of cross-vectors should be tested 
in order to define the sign of a quartet. In order to 
save computing time a simple procedure should be that 

* Lessinger (1976) has recently suggested that Rs may in 
general be a rotation matrix of the Laue group of the crystal. 
Thus, in accordance with Lessinger's geometrical consider- 
ations, one may conclude that more than three cross-vectors 
exist when one of the cross-vectors lies on a symmetry element 
of the Laue group of the crystal. 

A G 32A - 3" 
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of assuming W= 1 always, except when W=0.  This 
last case is easily recognizable as it involves a cross- 
reflexion which corresponds to a space-group extinc- 
tion. For an example, in P2~/e, let 

H1=(222) ,  H 2 = ( l l l ) ,  H3=(2T0).  

H2+H3=(301)  corresponds to a space-group extinc- 
tion. In accordance with the previous assumptions all 
the W's will be unity, whereas 

Wn2. u3 = Wa~. i~, +-2+n3 = Wa~,.2, a3 = 0 .  

So we obtain 

If we denote the point group operators by 

iii iii i!! iii RI= ; a 2 =  , Ra= ; R 4 =  , 

!°il li°il Iiii Rs= T ; R 6 =  T , R7 = ; Rs = , 
0 0 

the following quartets, symmetry related to each other, 
may be constructed" 

1 2 2 2 2 Enl  + n2+ Enl  + n3 -  2 -  (Enl- +-n2-"s-+ E---HA÷-n3"-s --'2) ] (21) 
P+ "~½ +½ tanh [En,Eu2En3Enl+nz+n3]× 2 2 2 E 2 " 

1 + 4 ( E . ,  +n2+ Ena +.3+En~ +n2,,+ n,~ n3R,--4)/N] 

R, is defined by the condition (H2 + H3) (R~- I) = 0; so 
in (21) 

1 0 0 
R , =  O T O  

0 0 1 

If IEm+l~.l, lEri~+.~l are large and IEih+H~a,I, 
IE~x+n3a~[ are small, (21) indicates a strongly positive 
quartet: on the other hand a strong negative quartet 
is suggested if IEih+n21, lE.a+.31 are small and 
IErh+n2a],lEn~+a3a,[ are large. Let us note further- 
more: (a) it is possible to derive a negative character 
for a quartet from large [El values, (b) if all the cross- 
vectors in (21) are large; the value of P+ nears 0.50. 

As a further example, in P2Jc, let 

H , = ( 2 2 2 ) ,  n 2 = ( l l l ) ,  Hz=(2T3).  

As H2 + H3 = (304) is a special reflexion which does not 
correspond to a space-group extinction (pn2+n3=2), 
we obtain 

HI, H2, Ha, H1 + H2 + Ha, 
H1R2, H2R2, Ha, HI+H2WH3, 
H1R4, H2R4, H3, Ha + H2-4- Ha, 
H1R7, H2RT, H3, HI + H2 + Ha, 
H1R2, H2, H3R2, Ha + H2 + H3, 
Ha, H2R3, H3R3, Ha + H2 + Ha, 

with their cross-relations (of quartet type) 

H1R2, H2R2R3, HaR3, Ha + H2 + Ha, 
HIR4R2, H2R4, HaR2, Hx +H2+H3, 
HaR4, H2R4R3, HaR3, Ha +Hz+H3, 
HIR7, H2RTR3, H3R3, H1 +Hz+H3, 
HARE, H2R3,  HaR2R3, HI +H2+Ha. 

From the considerations developed above, the sign 
of the quartet depends in this case on 16 cross-vectors: 
i.e. (070), (0,3,11), (205), (2,3,11), (005), (035), (2,0,11), 
(235), (0,0,11), (270), (030), (0,7,11), (2,7,11), (075), 
(275), (230). 

P+~½+½tanh{llE.aEl~2En3E.,+n2+ml 
2 2 2 2 2 } × E~a+_rIz_+ Erq+_.3+ErI2+n_!-2+E._x+nzrt~ +/hi._+ H3Rs 2 3  ] 

1 2 2 2 2 2 + 4(Enx + n2 + Eril +.3 + E"2 +"3 + Eih + H2R s "31- Erq + H3R s - -  5)IN .] 
(22) 

The advantages of (22) in comparison with (4) are 
evident. The probable sign of the quartet is in fact 
derived from five cross-vectors. It is natural to expect 
that this type of quartet will, on average, be more 
reliable than quartets which depend on three cross- 
vectors alone. More favourable cases are easily given. 
For example, in Pmmm, the four vectors 

H1=(123) ,  H2=(T53),  H3=(1--58), H,=(12-g) 

6. Non-centrosymmetric space groups: further remarks 

The conclusions about the role played by the statistical 
nature of the cross-reflexions in defining the sign of 
a quartet are valid in non-centrosymmetric groups too. 
Some further remarks however may be useful. 

(1) In centrosymmetric as well as non-centrosym- 
metric space groups the term ( IE . I+@ 2 -  1) occurs in 
(4) or in (8) if (Appendix B) 

give rise to a quartet whose cross-vectors are all of 
special type" Ha2 = (070) with statistical weight p =4,  
Ht3 = (0311) with p = 2, H23 = (205) with p = 2. 

(~CH1)~(H2)~(Ha + H2) > 

× (~(H3)~(H1 + H2 + H3)~(H1 + H2)> # 0 .  (23) 
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Whereas in centrosymmetric space groups (23) is 
violated solely when H1 +H2 corresponds to a space- 
group extinction, in certain non-centrosymmetric 
space groups (23) is transgressed in other circum- 
stances too (Giacovazzo, 1974b). For example, in 
P2~2~21 (23) is violated (see § 1) when 

H1 = (Ogu), H 2--- (gOu) . 

Our algebraic considerations tell us that (7) is once 
more valid, but (8) becomes 

2 
G= -~  [EH:En2En3Enl + I% + n3 [ 

)< [ ( E 2 1  + H3 1 ) +  2 -- (En2+n3-  1)] . 
In conclusion, the magnitude En~+n2 does not affect 
in this case the expected value of the cosine invariant. 

(2) In centrosymmetric as well as non-centrosym- 
metric space groups 

WH1 ' H2 ' H3 = 0 (24) 

when one of the cross-reflexions corresponds to a 
space-group extinction. In some non-centrosymmetric 
space groups (24) may occur in other circumstances. 
For example, in P2~2x2,, let 

H~=(0gu) ,  H2=(u0g) ,  H3=(ug0) ,  
H~ + H2 + H3 = (Ogu) . 

As the crystallographic symmetry restrains the values 
of the phases to 

~0nl, ~0H2, ~ H I + H 2 + H 3  = 0  , (fill3 = _+n/2 

the knowledge of the phase ~0nl+~0n2+tPi~3 does not 
give information on ~0n:+n2+.3, whatever IEntl, lEn2[, 
IEn31, IEHl+nz+n3[ may be. From an algebraic point of 
view this situation is marked by 

(~(H~)~(H2)~(H3)¢(Hx -4- 8 2 -31- H3)) = 0 .  

7. A genera l i za t ion  o f  the H a u p t m a n  formulat ion  

The algebraic considerations which allowed in the pre- 
ceding sections a generalization of Giacovazzo's quar- 
tet phase relationships, enable us also to generalize 
Hauptman's  formulation. We will refer in this section 
to the centrosymmetric space groups: the reader will 
be able to deal with the non-centrosymmetric ones by 
means of the considerations made in § 6. 

The general form of the probability density function 
for seven reflexions is given by (El).  When all seven 
vectors are general, the quartet sign relation 

1 P+ _ -~- exp (-T- B) cosh R:2Z~ 
~/N 

R23Z2~3 R31Z3~I ( 2 5 )  
×cosh 1 ~  ............... cosh I/N 

holds [Hauptman & Green (1976), equation (3.13): see 
this paper for the notation]. (El)  enables us to derive 
directly the sign relations when one or more cross- 

vectors are special or are not in the set of measure- 
ments. So, if one (i.e. H1 +H2) or two (i.e. H~+H2 and 
H~ +H3) cross-reflexions are not in the measurements, 

1 R23Z~ R3IZ~ 
P-+ --- ~L' exp (Yr B/2) cosh - - ~ - -  cosh CN 
o r  

1 R23Z ~ 
P+---Z-r;cosh l/N , 

hold respectively, where 

- - - - ,  (26) 

(27) 

R23Z + R31 Z+ 
L ' = e x p  ( -  B/2) cosh - - - ~ - -  cosh ]/N 

R23Z~3 R31Z31 
+ e x p ( + B / 2 )  cosh ]/N cosh ]/N 

L" = cosh R2-------3Z--~3 -4- cosh R23Z~3 
l/U ]/U 

(26) and (27) are not explicitly given by Hauptman & 
Green (1976). As to the occurrence of special reflex- 
ions, in accordance with the assumption made in § 5, 
W is always equal to l, except when W equals 0. 
Therefore, if one cross-vector (i.e. H i + H 2 )  is a sys- 
tematic absence, 

Wnl,  n2, H3 = Wnx, H2 = WrI3, n l + n2 + ns = 0:  

then 

J n23zg R31Z~ (28) P+ = Ld i exp (-T- B) cosh - - - ~ - - -  cosh 
]/U 

If two cross-reflexions are systematic absences (i.e. 
Hx + H2 and H~ + H3) 

1 R23Zg (29) P+_= ~ e x p ( - T - B / 2 )  cosh ]/N " 

L m and U v are suitable functions that the reader will 
easily derive. 

The quartet sign relation, given only the four mag- 
nitudes Rnl, RH 2, RH 3, Rnl +n2.n3, is 

P+ ~- ½, (30) 

if one cross-vector is a systematic absence, in strong 
contrast with the relation (4.1) in Hauptman & Green 
(1976). Particularly noteworthy is a comparison of (28), 
(29) and (30) with (25), (26) and (27) which illustrates 
the change which may take place when some of the 
seven reflexions are of special type. We deal now with 
the case in which more than three cross-vectors are 
explicitly taken into account" i.e., provided (H2 + H3) x 
(Rs -  I) = 0, they are Hi + H2, H1 + H3, H2 "4- H 3, H: + 
H2Rs, Ha +H3Rs. The general expression of this distri- 
bution is given by (E2). 

If  H2 + H3 is not a systematic absence, 

2(H2 + H3)Ts = 2n,  

W H I , H 2 ,  H3 = W H 1 , H 2  = • • • = WH2,  H I + H 2 + H 3  = 1 , (31a) 
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W H I + H 2  = W h 2 ,  H I + H 2 + H 3 =  ( - 1)2i i2r , ;  

WH1,H3 = WH3,  H I + H 2 + H 3 = (  - 1) 2n3w~. (31b )  

Denoting 

RS"~RIll+H2R s , R9= RHI+H3Rs , 
then 

1 P+ = ~-  exp (-T- 4R~R2RaR4) cosh R~zZ~ 
eU 

. RzlZ~ R23Z~ 
× cosn ~ - - - -  cosh ]/N 

RaZ~ R9Z~ 
x cosh ~ cosh ]//N , (32) 

where L is a suitable normalizing function. 
If H2+H3 is a systematic absence, (31b) is still valid, 

but (31a) becomes 

Wil l ,  H2 ' H3 : WH2 ' H3 = WH1 ' HI + H2 a t. H3 = 0 ; 

Wnl, n2 . . . . .  1 . 

As 2(H2 + H3)T~ = 2n + 1, then 

1 RI2Z ~ R31Z~ 
P + = - ~ - c o s h  i/N cosh 1/N 

RsZ~ . R9Z~ 
× cosh ---~-- COSfl ? ~  

These equations emphasize the importance of the 
space-group symmetry in the direct procedures which 
use quartet relationships. 

8. C o n c l u s i o n s  

The theory described in the present paper allows us to 
modify the phase relationships (4), (7) and (25) so as 
to take the space-group symmetry into account. The 
more relevant changes occur when one or more cross- 
reflexions are of special type. In this case the theory 
recognizes the additional cross-reflexions whose mag- 
nitudes should be tested in order to strengthen the 
phase relationship. 

In certain space groups the quartets having special 
cross-vectors should be a non-negligible percentage of 
the total. The results of the present investigation, there- 
fore, should improve the overall reliability of the 
quartet relationships. 

APPENDIX A 

By the definition of normalized structure factors 
(Hauptman & Karle, 1953) in a centrosymmetric space 
group of order m, 

1 t 

/ 

where 
N 

2 1/2 V.i=fJ(~,yf.t) , Ph = (~2(h))/m. 
1 

Let us denote by C~ = (R.  Ts) the s-symmetry operator 
(R~ rotation component, T. translation component). 
From the theory of linearization (Bertaut, 1959a, b) 

<~(H0~(H2)~(Ha)~(H~ + H2 + Ha)) 
m 

=< 
1 

× exp 2ni(H~Tp + HzT s + HaT~)). (A 1) 

The value of (A1) is different from zero for all Rp, 
R~, R~ operators for which 

H~fR~- I) + H 2 ( a s -  I) + H3(R~-I)  = 0 .  (A2) 

As 
m 

(~2(H)> = ( ~ ~[H(Rs-I)]  exp 2niHTs)=pnm, 
1 

the statistical nature of H,, H2, Ha,H, + H2 + Ha, must 
be taken into account in order to estimate (A1). 

What is particularly noteworthy is that the statis- 
tical nature of the cross-reflexions Eil~+aj can affect 
the value of (A1). Let us suppose, for example, that 
En,,Enz, En3,En.,+H2+It3 are all general reflexions and 
Eu1+n2 is a special one. The condition (A2) is satisfied 
when 

(H~ + H 2 ) ( R , , - I ) = 0 ,  H 3 ( R ~ - I ) = 0 .  (A3) 

If EHI+ri2 has the statistical weight pr la+i i2 :# l ,  Prlx+H2 
distinct point group operators R. will ,~xis-"v t ror which 
(A3) is satisfied. In conclusion 

<~(HI)~(I-I2)~(H3)~(I-I1 + H2 -4- Ha)>-----pHI +H2 m . 

Particularly noteworthy is the case when one or more 
cross-reflexions are systematically absent. Then 

<~(rI1)~ffI2)~fH3)~(H1 + H2 + H a ) )  = 0 .  (A4)  

In order to show (A4), suppose that H, +Hz  is a sys- 
tematic absence. (AI) reduces then (p=s, v= 1) to 

(~(I - I I )~(H2)~(Ha)~(H , -4- H 2 + Ha) > 
m 

= (Y. ~[(H, + H2) (R. - I)] exp [2ni(H~ + H2)T.]> 
I 

= < 2(I-Ix + n 2 ) >  = 0 .  

Similar considerations may be used in order to deal 
with more complicated cases. 

APPENDIX B 

In P1 (Giacovazzo, 1975) 

( EII,EH2EH3 EH, + H2 + H3) 
1 

= (B1) 

(B1) is derived from the Fourier transform in PT of 
S4/t 2 as well as of $2/2t 3. The transform of the most 
relevant term in S4/t 2 for any centrosymmetric space 
group has been discussed in Appendix A. We derive 
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here the general Fourier transform of the three terms 
in S]/2t 3 which contribute to (B1). 

These terms are the mixed products 

1 
7 [2~,o~ooo(iul) (iu2) (iu4). 2ooxloot(iu3) (iu4) (iu7)], 

1 
[2xo~oxoo(iul) Qua) (ius). 2olooxox(iu2) (ius) (iu7)], 

1 
-~- [~,01XOOlo(iU2) (iu3) (iu6) • ~.100001I(iul) (iu6) (iUT)] • 

(B2) 

(B3) 

(B4) 

In PT, or in any space group when all the reflexions 
are general, the Fourier transform of (B2)-(B4) gives 

1 
N En'EH2EHaEHI+H2+rI3 

×[(E2,+n2 1)+ 2 - ( E n , + r h -  1) + (E22+ri3 - 1)], 

from which (B1) follows. 
The general expression of the Fourier transform is 

1 
N EHIErlzEHaErlx+H2+H3[Wltl'HzWHa'HI+It2+rI3 

2 
X ( E H I + H  2 - 1 ) +  Wn~ nsWn2 2 • , H I + H 2 + H 3 ( E H I + H 3 - -  1) 

2 
+ WH2, H 3 WH1, H I + H2+ H3(EH2+H s -- 1)], 

where 

1 < <~(H~)~(H2)~(Hx q- H2) > 
Wri t 'H2=  m " V(Pn,Pri2PH~+H2) " , etc. 

APPENDIX C 

In P1 the variance of EH~EH2EH3EHt +n2+ n~ is given by 

2 2 2 2 (72 ~-  <En,EnzEnaEn, + n2 + n3> 
1 + 4[(E~x + r12- 1) + 2 _ (EH,+H3 1 ) A - ( E h 2 + a  3 - 1 ) ] / N .  

(C1) 

(C1) is derived from the Fourier transform in PT of 
S]/2t 3. The general expression for any centrosym- 
metric space group of the terms in S]/2t a which con- 
tribute to a 2 is 

1 
2t [2~l°l°°°(iul)2(iu2)2(iu4)2 + 22°l°l°°(iul)2(iu3)2(ius)2 

2 2 2 2 2 2 2 2 + 201xoo~o(iU2) (iu3) (iu6) + 2xoooon(iul) (iu6) (iuT) 
+ 2~xo0101(iu2)2(ius)Z(iu7) 2 + 2Zoollool(iu3)2(iu4)2(iuT)2]. (C2) 

In PT, or in any space group when all the reflexions 
are general, the Fourier transform of (C2) is 

1 
2N [H2(EOH2(E2)H2(E,) + H2(Ex)H2(E3)H2(Es) 

+ H~(E~)H~(E~)H~(E~)+ H~(EI)H~(E~)H~(E7) 

+ H2(E2)H2(Es)Hz(E7)+ Hz(Ez)Hz(Ea)Hz(ET)]. (C3) 

The general expression of the Fourier transform of 
(c2) is 

1 
2N [ W2t'  H zH2( En~)H2(Ea2) H2(En~ + a2) 

+ W2,.I~3H2(EI-I,)H2(EI~3)H2(En,+n3)+...], (C4) 

where Wa,,a2, Wa,.ri3,. . . ,  have been defined in Ap- 
pendix B. 

APPENDIX D 

Let EH1, EH2, EH3, EHI+n2+H3 be general reflexions and 
EH2+H3 a special reflexion for which (H2+H3)(Rs-I )  
=0. When the joint probability distribution 

P (EH 1, EH z, EH 3, Erq + H2, EH 1 + .3 ,  EH2+ H3' 

EH, + n2 + ha, EH, + rlza,, En, + rha)  

is considered, a number of non-vanishing cumulants 
should be added to those which arise from the distri- 
bution 

P (EnI, En2, .. .,En,+n2+na) • 

Of the additional moments those which affect the con- 
clusive phase relationships are 

<~fHx)~(H2)~(H1 + H2R~)> = m(- I) 2n:, , (DI) 

<~(H1)~(Hz)~(Hx + H3R~)> = m(- l)2n3r,, (D2) 

(~2(H1)((H1 q-H2)~(H1 + H 2 R s ) > = m y s (  - 1) 2n:s  , (D3) 

(~2(H3)~(H~ + H3)~(H~ + H3R~)>=mys(- 1) 2n~x, , (D4)  

(~(Hz)~(H~ + H2 + H3)~(H1 + H3R,)> = m ( -  1) 2n2r, 

<~(H3)~(HI + H2 + H3)~(H1 + H2R,)> = m ( -  1) 2n3T, 

(DS) 

(D6) 

(D1)-(D4) have been recently stated (Giacovazzo, 
1977). 7s is a factor which depends on the symmetry 
class and on the actual point group operator Rs. 

(D5) and (D6) may be proved from the identity 

<~(H2)~(H 1-4- H 2 a t- H 3 ) ~ ( H  1 q- H3Rs) ) 
m 

= ( ~p,a ~[HI(R a -  I) + H 2 ( R q -  I) + H3(R~Ra-  I)] 
1 

x exp 2zd(aiTa + H2Tp + H3R~Tq)>. (D7) 

(D7) does not vanish when Ra=I  and Rp=R,. In that 
case (D7) coincides with 

<~[(H2 + a3) (Rs-  I)] exp 27ri(H2T~ + H3Rs)> 

= m exp 27~iH2Ts, 

which, as (H2 + H3) (Rs-  I) = 0, gives (D5). 
Cumulants which arise from (D3) and (D4) are not 

relevant to defining the sign of a quartet (see Giaco- 
vazzo, 1975, when R ~ = - I )  and have been neglected 
in §§ 4 and 5. 
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APPENDIX E 

In any centrosymmetric space group the probability 
density function, given the seven magnitudes Ral, RH2, 
• . . , R H 2 + r I 3 ,  is 

1 
- -  E22+ns) P~_ (2x)7/2 exp [ - ½ ( E 2 1 + . . .  + 

1 
+ - ~  (Wnl,.2EtI1En2Etil+n2 

+ WH3, r l l  + r12+ HaEH3EH1 + n2+ nsErlx +n2 
"t" WH2, H3EH2EH3EHz+H3 
+ WHx,Hx+H2+H3EHxEHI+H2+H3EH2+H3 
+ WrI 1, rlsErliErhErh +H 3 

+ Wn2, nl +nz+asEnzEal + n2+ n3Eax + n3) 
1 
N (Wna' H 3, n I + H2EHIEH3EHI + H2EH2 + H 3 

+ WH2, H 1 +H2+H3, H 1 +H2 

× EHzEHI+H2+H3EHI+H2EH2+H3 
+ WH1, H2, H2+H3EH1EHzEH2+H3EH1 +Ha 

+ Wn3, Hi + n2 + us, n2 + tI3Erl3Enl + ti2 + a3 
x ErI2+ a3Erll + n3 + Wa2, as, nl + a3 
× En2Ea3Erll + n3Enl+ n2 

"}- WH1 ' a 1 + n 2 + n  3, H 1 + H3ElaxEH1 +Hz+H3 
× E~I1 + I~3Eal + s , )  

1 
+ ~ (Wax, n2. a3 - Wal. a2 Wa3, al + a2 + -3 

--  WH1 ' H 3 WH 2, H I + H2+ H 3 

--  WH1 ' H 1 + H 2 + H 3 ~J/H2, H3)EHIEH2EH3EH1 + H 2 + H3]" 

(El)  

The generalized expression of the probability density 
function in any centrosymmetric space group when 
H2+Hs  is a special vector [i.e. (H2 +H3) ( R , - I ) = 0 ]  is 

P (  E a l ,  E . 2 ,  . . . , E~II + ,3 ,  E . 1  + i~,~,, E . x  + .38 , )  

1 
----- 2 ( E t l l  + E 2 2  + . . .  + E 2 1 +  H3R,) (27~)9/2exp [ _ 1  2 

1 
+ - ~  (WH1, H2EH1EHzEHI+H2 

+ W n s ,  I-I 1 + a 2 + a 3 E r i s E r l l  + rl z + . 3 E H I  + 1-12 

+ Wtl2. rlsErI2ErI3ErI2 + a 3 

"3 t- WH1, H3EH1EH3EHI + H 3 
21- WH2 ' HI+H2+H3EH2EHI+H2+H3EH1 +H 3 

+ WH1,H2EH1EH2EHI+H2R , 

71- WH3 ' H I + H 2 + H s E H s E t l l  +U2+ asErh +H2R ̀  

"q- WHI ' H3EH1EH3EH1 +H3R s 

"-t- WH2 ' HI + H2+ H3EH2EH1 +H2+H3EH1 +H3Rs) 

1 
+ N EHIEn2EusEnl+a2+"3 

× (WH1. u2, rI3 - WH1. a2 Wn3, It1 + n2 + H3 

--  WH2 ' U 3 WH 1 , n 1 + - 2 + n 3  - WH1 ' H 3 WH 2. n 1 +--2+H3 

-- W h l , H 2 W H 3 , H I + H 2 T H  3 -- W h I , H 3  WH2, H I + H 2 + H  3) 

1 
N ( Wnx" H3, H1 + H2ErhEHzE"I + H2E"2+ "3 

"t- WH2 ' H1 +H2+H3 ' HI +H2EH2 

x ErIx+H2+H3EHx+a2EH2+.3 + . . . ) ] .  (E2) 

The corresponding distributions in non-centrosym- 
metric space groups are strongly suggested by (El)  
and (E2). 
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